
Geospatial File Formats

OpenSHA stores geospatial data in GeoJSON, which is specified in RFC 7946. OpenSHA code for (de)serializing
GeoJSON can be found in the org.opensha.commons.geo.json package.

Important note on depths/elevations: OpenSHA stores depth data in km, positive down. For example, a value of 3.
0 in the third column of a coordinate array indicates that the given point is 3 km below the local surface. This differs
from the GeoJSON specification, but is in-line with the USGS Event Web Service and general treatment of 3D location
data in OpenSHA and other PSHA codes. You can load a file in code that uses a different depth standard with the buil
dGson(DepthSerializationType) method of FeatureCollection.

Table of Contents

Fault Data
Requirements
Optional
Note on fault traces for buried, dipping faults
Example

Regions
Example
Example With a Hole

•
◦
◦
◦
◦

•
◦
◦

https://geojson.org/
https://datatracker.ietf.org/doc/html/rfc7946
https://github.com/opensha/opensha/tree/master/src/main/java/org/opensha/commons/geo/json
https://datatracker.ietf.org/doc/html/rfc7946
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson_detail.php
https://github.com/opensha/opensha/blob/master/src/main/java/org/opensha/commons/geo/json/FeatureCollection.java

Gridded Regions
Optional Properties
Example

Fault Data

(return to top)

Fault data are stored as GeoJSON Feature objects, and a collection of faults (e.g., a fault model or fault subsection
list) are stored in a FeatureCollection. See GeoJSONFaultSection for the OpenSHA implementation of this format.

Fault data requirements

(return to top)

At a minimum, a GeoJSON fault must contain the 3 following items:

1. Fault Trace

(return to top)

The fault trace must be present in the geometry object in the form of a LineString or MultiLineString. If a
MultiLineString is encountered and it contains a single LineString (GIS softwares may output single lines in this
format), it is supported. If a MultiLineString is encountered and it contains two LineStrings, then the second trace
is treated as a lower trace; that lower trace must be below the upper trace (it must explicitly specify depths in the
coordinates array), and must be in the same general direction as the upper trace.

Example fault trace as a LineString with 2 points:

•
◦
◦

https://github.com/opensha/opensha/blob/master/src/main/java/org/opensha/sha/faultSurface/FaultSection.java
https://github.com/opensha/opensha/blob/master/src/main/java/org/opensha/sha/faultSurface/GeoJSONFaultSection.java

Example upper and lower fault traces as a MultiLineString, each with explicitly stated depths in the coordinates
array:

2. Required properties

(return to top)

The following properties are required:

Name JSON Type Description

DipDeg Number

"geometry": {
"type": "LineString",
"coordinates": [

[-117.74953000000001, 35.74054],
[-117.76365068593667, 35.81037829696144]

]
}

"geometry": {
"type": "MultiLineString",
"coordinates": [

[
[-117.74953000000001, 35.74054, 0.0],
[-117.76365068593667, 35.81037829696144, 0.0]

],
[

[-117.74953000000001, 35.74054, 10.0],
[-117.76365068593667, 35.81037829696144, 10.0]

]
]

}

Name JSON Type Description
Dip of the fault in decimal degrees, following
the right hand rule. See the glossary for
more information. Note: this can be omitted
for dipping faults if a lower fault trace is
supplied.

LowDepth Number

Lower depth of the fault in kilometers. See
simple fault for more information. Note: this
can be omitted for dipping faults if a lower
fault trace is supplied.

Rake Number
Rake of the fault in decimal degrees, see the
glossary for more information.

UpDepth Number

Upper depth of the fault in kilometers, not
including any aseismicity. See simple fault
for more information. Note: this can be
omitted for dipping faults if a lower fault
trace is supplied.

3. Unique ID

(return to top)

A unique non-negative integer ID is required for each fault section. This can be specified either as the id field of
the Feature itself (must be an integer), or via the optional FaultID property. If both exist, the id field of the feature
takes precedence.

Fault data optional extensions

(return to top)

https://opensha.org/Glossary#strike-dip--rake-focal-mechanism
https://opensha.org/Glossary#simple-fault
https://opensha.org/Glossary#strike-dip--rake-focal-mechanism
https://opensha.org/Glossary#strike-dip--rake-focal-mechanism
https://opensha.org/Glossary#simple-fault

The following optional properties will be parsed by OpenSHA (other properties may be present and will be
ignored):

Name JSON Type Description Default Value

AseismicSlipFactor Number

Fraction (value in the range
[0,1)) of the fault area that is
aseismic, typically applied by
increasing the upper depth of the
fault such that the area is
reduced by this fraction.

0.0

Connector Boolean
Boolean indicating that this fault
is a Connector (currently
unused).

(none)

CouplingCoeff Number
Fraction (value in the range
[0,1]) of the slip rate of this fault
that is released seismically.

1.0

DipDir Number
Dip direction of this fault, see the
glossary for more information.

Average trace strike direction +
90 degrees

DateLastEvent Number

Date of the last event that
ruptured this fault, used in time-
dependent forecasts, expressed
in epoch milliseconds.

(none)

FaultID Number
Integer ID of this fault. Must
supply either this or the Feature’s
id field.

(none)

FaultName String Name of this fault. (none)

ParentID Number

Integer ID of the parent to this
fault. This is typically used when
subdividing a fault into
subsections, and will point to the
ID of the original fault section.

(none)

ParentName String
Name of the parent to this fault.
This is typically used when (none)

https://opensha.org/Glossary#strike-dip--rake-focal-mechanism
https://opensha.org/Glossary#strike-dip--rake-focal-mechanism

Name JSON Type Description Default Value
subdividing a fault into
subsections, and will give the
name of the original fault
section.

PrimState String
2 letter abbreviation of the
primarily associated US state for
this fault, if it exists.

(none)

SecState String
2 letter abbreviation of the
secondary associated US state for
this fault, if it exists.

(none)

SlipLastEvent Number
Slip in meters of the last event
that ruptured this fault.

(none)

SlipRate Number
Average long-term on-plane slip
rate of this fault in mm/yr.

(none)

SlipRateStdDev Number
Standard deviation of the
average long-term slip rate of
this fault in mm/yr.

(none)

You can optionally supply a polygon geometry that this fault represents. In this case, the geometry object must be a
GeometryCollection that contains both a fault trace (as either a LineString or MultiLineString) and a polygon as
either a Polygon or MultiPolygon. For example:

"geometry": {
"type": "GeometryCollection",
"geometries": [

{
"type": "LineString",
"coordinates": [

[-117.76365068593667, 35.81037829696144],
[-117.76492000000002, 35.81665],
[-117.7758769984411, 35.880450900949334]

]

Note on fault traces for buried, dipping faults

(return to top)

The notion of a fault trace is complicated for buried dipping faults (i.e., those with dip < 90 and upper seismogenic
depth > 0). In OpenSHA, we typically assume this simple fault geometry where a rupture surface is defined by the
down-dip projection of the fault trace (shown in red at the earth’s surface in the schematic below):

},
{

"type": "Polygon",
"coordinates": [

[
[-117.73341200000002, 36.16374],
[-117.75440599999999, 36.158123],
[-117.76325900000002, 36.159714],
[-117.77182599999999, 36.112068],
[-117.779052, 36.092946],
[-117.73341200000002, 36.16374]

]
]

}
]

}

https://opensha.org/Glossary#simple-fault

Simple fault example

Modelers may wish, instead, to specify the upper edge of the (buried) surface (shown in green in the schematic
above) rather than the up-dip extension at the earth’s surface (shown in red). To accommodate this, we adopt the
following convention when reading fault section data from GeoJSON:

If trace locations are specified without depths in the GeoJSON file, e.g.,:

…then the trace is assumed to be an upper edge and the depths are set to the upper seismogenic depth. So, for
example, if the “UpDepth” property (upper seismogenic depth) is set to 5 km, then the above supplied trace would
be interpreted as:

If, instead, the locations are specified with depths, e.g.,:

Or another example, this time with non-zero depths:

…then the trace will be placed at the supplied depth, and the surface will be projected down-dip from that trace. In
this case, the supplied depth must at or above the upper seismogenic depth. GeoJSON files generated by OpenSHA
codes will always have the depth of fault traces explicitly stated for buried dipping faults, so this convention only
applies to externally-generated files.

Example Fault Data GeoJSON

(return to top)

"coordinates": [[-120.7585, 36.79945], [-120.70175, 36.71373], [-120.64514, 36.62798]]

"coordinates": [[-120.7585, 36.79945, 5.0], [-120.70175, 36.71373, 5.0], [-120.64514, 36.62798,
5.0]]

"coordinates": [[-120.7585, 36.79945, 0.0], [-120.70175, 36.71373, 0.0], [-120.64514, 36.62798, 0.
0]]

"coordinates": [[-120.7585, 36.79945, 3.0], [-120.70175, 36.71373, 3.0], [-120.64514, 36.62798,
3.0]]

Here is an example FeatureCollection that contains a single fault, represented as a Feature:

{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"id": 0,
"properties": {

"FaultID": 0,
"FaultName": "Airport Lake, Subsection 0",
"DipDeg": 50.0,
"Rake": -90.0,
"LowDepth": 13.0,
"UpDepth": 0.0,
"DipDir": 89.4594,
"AseismicSlipFactor": 0.1,
"CouplingCoeff": 1.0,
"SlipRate": 0.39,
"ParentID": 861,
"ParentName": "Airport Lake",
"SlipRateStdDev": 0.0

},
"geometry": {

"type": "LineString",
"coordinates": [

[-117.74953000000001, 35.74054],
[-117.76365068593667, 35.81037829696144]

]
}

}
]

}

Regions

(return to top)

OpenSHA Regions are stored as GeoJSON Feature elements that include a Polygon or MultiPolygon. MultiPolygon’s
are supported to increase compatibility, but must consist of a single Polygon.

A Region can have a name, which is stored in the id field of the Feature as a JSON string.

Polygons should follow the GeoJSON specification, notably that they shall contain at least one linear ring (a closed
path). The first path shall be the exterior ring (should be ordered counterclockwise according to the RFC, but we
don’t check) and subsequent rings are considered interiors (paths) and should be clockwise (though again, we
don’t check).

Region Example

(return to top)

Here is an example region that is a simple rectangle with minLat=34, maxLat=36, minLon=-120, and maxLon=-118:

{
"type": "Feature",
"id": "Simple region",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [

[
[-120.0, 34.0],
[-118.0, 34.0],
[-118.0, 36.0],

https://github.com/opensha/opensha/blob/master/src/main/java/org/opensha/commons/geo/Region.java

Region Example With a Hole

(return to top)

Here is an example region that is a rectangle with minLat=34, maxLat=36, minLon=-120, and maxLon=-118, with
an interior (hole) cut out with minLat=34.5, maxLat=35.5, minLon=-119.5, and maxLon=-118.5:

[-120.0, 36.0],
[-120.0, 34.0]

]
]

}
}

{
"type": "Feature",
"id": "Region with a hole",
"properties": {},
"geometry": {

"type": "Polygon",
"coordinates": [

[
[-120.0, 34.0],
[-118.0, 34.0],
[-118.0, 36.0],
[-120.0, 36.0],
[-120.0, 34.0]

],
[

[-119.5, 34.5],
[-119.5, 35.5],
[-118.5, 35.5],
[-118.5, 34.5],

Gridded Regions

(return to top)

OpenSHA Gridded Regions are stored as GeoJSON Feature elements that include a Polygon or MultiPolygon to
specify the region boundary, and a PointCollection to specify grid nodes. Grid node locations must be evenly
discretized in latitude in longitude, though the latitude and longitude spacing can be different. They can be
irregular for non-rectangular regions.

Like a Region, a Gridded Region can have a name, which is stored in the id field of the Feature as a JSON string.

Gridded Region Optional Properties

(return to top)

The following are optional properties, used primarily for OpenSHA bookkeeping, and can be safely omitted so
long as the Gridded Region does not contain any holes. If omitted, they will be inferred from the supplied grid
nodes.

Name JSON Type Description

Anchor Array of Number
Lon,Lat of the anchor (lower left) point of
the grid

LatNodes Array of Number
List of unique grid node latitudes in
increasing order

[-119.5, 34.5]
]

]
}

}

https://github.com/opensha/opensha/blob/master/src/main/java/org/opensha/commons/geo/GriddedRegion.java

Name JSON Type Description

LatSpacing Number Latitude grid spacing in decimal degrees

LonNodes Array of Number
List of unique grid node longitudes in
increasing order

LonSpacing Number Longitude grid spacing in decimal degrees

Gridded Region Example

(return to top)

Simple example:

{
"type": "Feature",
"id": "Example gridded region",
"geometry": {

"type": "GeometryCollection",
"geometries": [

{
"type": "Polygon",
"coordinates": [

[
[-120.0, 34.0],
[-118.0, 34.0],
[-118.0, 36.0],
[-120.0, 36.0],
[-120.0, 34.0]

]
]

},
{

"type": "MultiPoint",

Example with full optional OpenSHA metadata properties:

"coordinates": [
[-120.0, 34.0],
[-119.5, 34.0],
[-119.0, 34.0],
[-118.5, 34.0],
[-118.0, 34.0],
[-120.0, 34.5],
[-119.5, 34.5],
[-119.0, 34.5],
[-118.5, 34.5],
[-118.0, 34.5],
[-120.0, 35.0],
[-119.5, 35.0],
[-119.0, 35.0],
[-118.5, 35.0],
[-118.0, 35.0],
[-120.0, 35.5],
[-119.5, 35.5],
[-119.0, 35.5],
[-118.5, 35.5],
[-118.0, 35.5],
[-120.0, 36.0],
[-119.5, 36.0],
[-119.0, 36.0],
[-118.5, 36.0],
[-118.0, 36.0]

]
}

]
}

}

{
"type": "Feature",
"id": "Example gridded region",
"properties": {

"LatNodes": [34.0, 34.5, 35.0, 35.5, 36.0],
"LonNodes": [-120.0, -119.5, -119.0, -118.5, -118.0],
"LatSpacing": 0.5,
"LonSpacing": 0.5,
"Anchor": [-120.0, 34.0]

},
"geometry": {

"type": "GeometryCollection",
"geometries": [

{
"type": "Polygon",
"coordinates": [

[
[-120.0, 34.0],
[-118.0, 34.0],
[-118.0, 36.0],
[-120.0, 36.0],
[-120.0, 34.0]

]
]

},
{

"type": "MultiPoint",
"coordinates": [

[-120.0, 34.0],
[-119.5, 34.0],
[-119.0, 34.0],
[-118.5, 34.0],
[-118.0, 34.0],
[-120.0, 34.5],

[-119.5, 34.5],
[-119.0, 34.5],
[-118.5, 34.5],
[-118.0, 34.5],
[-120.0, 35.0],
[-119.5, 35.0],
[-119.0, 35.0],
[-118.5, 35.0],
[-118.0, 35.0],
[-120.0, 35.5],
[-119.5, 35.5],
[-119.0, 35.5],
[-118.5, 35.5],
[-118.0, 35.5],
[-120.0, 36.0],
[-119.5, 36.0],
[-119.0, 36.0],
[-118.5, 36.0],
[-118.0, 36.0]

]
}

]
}

}

	Geospatial File Formats
	Table of Contents
	Fault Data
	Fault data requirements
	1. Fault Trace
	2. Required properties
	3. Unique ID

	Fault data optional extensions
	Note on fault traces for buried, dipping faults
	Example Fault Data GeoJSON

	Regions
	Region Example
	Region Example With a Hole

	Gridded Regions
	Gridded Region Optional Properties
	Gridded Region Example

